
The Hidden Costs of
Coding With
Generative AI
Edward Anderson, Geoffrey Parker, and Burcu Tan

Generative AI can boost coding productivity, but careless
deployment creates technical debt that cripples scalability and
destabilizes systems.

August 18, 2025

Reprint 67110

sloanreview.mit.edu

The Hidden Costs of Coding
With Generative AI
Generative AI can boost coding productivity, but careless deployment creates
technical debt that cripples scalability and destabilizes systems.
By Edward Anderson, Geoffrey Parker, and Burcu Tan

GENERATIVE AI CAN BE A POWERFUL
productivity booster in coding — but only when
deployed thoughtfully. Used carelessly, it can cripple
scalability, destabilize systems, and leave companies
worse off.

Generative AI is growing explosively across knowl
edge work, particularly in software development. Ope
nAI’s latest release, GPT-4.1, focuses heavily on
enhancing coding capabilities and is a step toward full
automation. Organizations adopting these tools are
anticipating major gains. And early research supports
their optimism: GitHub has reported that programmers
using Copilot are up to 55% more productive, and McK
insey has found that developers can complete tasks up
to twice as fast with generative AI assistance.

But these positive indicators come with a major
caveat. The studies were conducted in controlled envi
ronments where programmers completed isolated tasks
— not in real-world settings, where software must be
built atop complex existing systems. When the use of
AI-generated code is scaled rapidly or applied to brown
field (legacy) environments, the risks are much greater
and much harder to manage. As part of our ongoing
research on the strategic management of AI-augmented
software development, we conducted interviews with
individuals involved in developing software — ranging
from junior developers to lead software engineers and
CIOs — across a diverse set of industries, including
insurance, web hosting, social media, defense, manage
ment consulting, and fintech. Drawing on insights from
these interviews, a review of the trade press, and our
own economic modeling, we have identified several
strategic trade-offs that companies should consider
when adopting generative AI for software development.

Why Technical Debt Grows Faster With AI
When an organization rapidly introduces new software
into existing systems, it can inadvertently create a tan
gle of dependencies that compounds its technical debt —
that is, the cost of additional technological work that
will be needed in the future to address shortcuts taken
and quick fixes made during development. Technical
debt is the hidden underbelly of digital technology. It is
the 60-year-old COBOL code in banking systems that
was never properly documented or updated. It is the
shortcut of representing the current year with two digits
instead of four, leading to the Y2K crisis, which cost
hundreds of billions of dollars to fix globally. The
buildup of technical debt causes slower development
cycles, increased complexity, and security vulnerabili
ties, potentially leading to system failures.

The Consortium for Information & Software Quality
estimates the cost of technical debt in the U.S. to be
at least $2.4 trillion. Despite this exorbitant price tag,
most organizations do not prioritize dealing with tech
nical debt, with the majority allocating less than 20%
of their tech budget to paying it down. Developers we
interviewed admitted that they often “sneak in” tech
nical debt management during maintenance because
leadership rarely approves dedicated time for it. As one
senior developer put it, “No one fixes the technical
debt, which then causes more fires, which prevents you
from fixing the technical debt, and so on.”

You can think of technical debt as operating much like
financial debt. The “principal” is the work needed to
modernize and refactor code; the “interest” is the ongo
ing complexity tax that slows maintenance, complicates
scaling, and raises the risk of failure. While some debt is
unavoidable, implementing AI-generated code is often
akin to borrowing at a much higher interest rate. As one
of the developers we interviewed said, “The problem
with AI is that it can’t see the big picture.” Develop
ers we interviewed also told us about code duplications,

AI & Machine Learning

© MIT Sloan Management Review, 2025 2

https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.wsj.com/tech/personal-tech/the-invisible-1-52-trillion-problem-clunky-old-software-f5cbba27
https://www.it-cisq.org/wp-content/uploads/sites/6/2022/11/CPSQ-Report-Nov-22-2.pdf
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-debt-reclaiming-tech-equity

Legacy systems already tend to carry
hidden debt; layering AI-generated code on
top of them creates additional tangled
dependencies.
integration problems, dependency conflicts, a lack of
context awareness, and myriad other problems that
come with coding with AI. Indeed, when GitClear ana
lyzed millions of lines of code from 2020 to 2024, it
uncovered an eightfold increase in duplicated code
blocks and a twofold increase in code churn — both
measures of declining code quality. The “2024 Accel
erate State of DevOps” report from Google’s DevOps
Research and Assessment team found that a 25%
increase in AI usage improves code review and docu
mentation but results in a 7.2% decrease in delivery sta
bility. So, what looks like rapid progress today could
turn into costly setbacks tomorrow.

Adding AI-generated code into brownfield environ
ments magnifies these risks. Legacy systems already
tend to carry hidden debt; layering AI-generated code
on top of them creates additional tangled dependencies
that slow future development and destabilize systems
even more. As one engineer at a top three AI company
told us, “AI can’t see what your code base is like, so it
can’t adhere to the way things have been done.” Future
AI models may be able to analyze entire code bases and
help solve these problems, but for now, working in
brownfield environments makes it much more likely
that AI-generated code will compound technical debt.

Letting technical debt compound is dangerous.
Southwest Airlines’ 2022 meltdown — which stranded
over 16,900 flights and cost the airline over $750 mil
lion — was rooted in technical debt in its crew-sched
uling systems. Technical debt drove the massive 2024
CrowdStrike outage that led to worldwide failures in
health care delivery. In May 2025, Newark Liberty
International Airport in New Jersey was plagued by
massive delays and hundreds of flight cancellations that
were caused by a combination of antiquated air traffic
control technology and staffing shortages. Failures like
these show how invisible risks can suddenly cripple
even major organizations. Without deliberate efforts to
“pay down the principal,” organizations risk becoming
overwhelmed — first slowly, then all at once.

When It’s (Relatively) Safe to Use
Generative AI for Coding
The potential risks don’t mean that companies should
always avoid using generative AI for coding. In the right
contexts, such as rapidly prototyping new products in
a greenfield (new) environment, AI-generated code can
deliver a real speed advantage. In these cases, early-
stage code will likely require major revisions anyway,
making technical debt less costly.

But when scalability is a priority, or within brownfield
environments weighed down by legacy systems, AI-
generated code must be deployed with extreme care.
Two factors strongly influence the level of risk:
■ The development environment (greenfield

versus brownfield): Greenfield projects, with no
legacy code, involve lower risk. Brownfield projects
are far more vulnerable to hidden debt accumula
tion.
■ Software engineering skills: Our interviews and

accounts by senior developers suggest that low-
skilled software developers are more likely to let AI-
generated technical debt snowball. Highly skilled
developers are better equipped to recognize archi
tectural flaws and mitigate technical debt before it
spreads. As a software developer in a Fortune 50
tech company’s AI infrastructure area shared,
“[With AI] a junior engineer can write as fast as a
senior engineer, but they don’t have the cognitive
sense of what they’re doing … or what problems
they’re causing … or even if it’s a good idea to do what
they’re doing.”

Managers should exercise caution when inexperi
enced developers are deploying AI-generated code, or
when such code is being deployed in a brownfield envi
ronment. When both risk factors are present, it may be
best to avoid deploying AI-generated code entirely.

Reducing the AI ‘Tax’ on Technical Debt
Even as generative AI continues to improve in its use
fulness, our research indicates that the associated risks
will remain important.

AI & Machine Learning

© MIT Sloan Management Review, 2025 3

https://www.gitclear.com/ai_assistant_code_quality_2025_research
https://www.gitclear.com/ai_assistant_code_quality_2025_research
https://cloud.google.com/blog/products/devops-sre/announcing-the-2024-dora-report
https://cloud.google.com/blog/products/devops-sre/announcing-the-2024-dora-report
https://www.nytimes.com/2022/12/31/opinion/southwest-airlines-computers.html
https://www.healthcaredive.com/news/crowdstrike-outage-hits-us-hospitals/721887/
https://www.healthcaredive.com/news/crowdstrike-outage-hits-us-hospitals/721887/
https://www.npr.org/2025/05/07/nx-s1-5388438/airlines-trade-group-vp-discusses-newark-airport-delays
https://www.npr.org/2025/05/07/nx-s1-5388438/airlines-trade-group-vp-discusses-newark-airport-delays
https://blog.devgenius.io/the-hidden-costs-of-ai-coding-assistants-insights-from-a-senior-developer-76274fe6b345

Organizations must treat AI tools’ tendency
to increase technical debt as a strategic
risk, not just an operational nuisance.

Organizations must treat AI tools’ tendency to
increase technical debt as a strategic risk, not just an
operational nuisance. To fully realize generative AI’s
promise, companies must do the following:
■ Develop clear guidelines for when and how to

use AI-assisted coding tools. Many large compa
nies (including Microsoft, Google, Meta, and Sales
force) have already established responsible AI use
policies grounded in ethical principles such as fair
ness, privacy, and inclusiveness. However, translat
ing these high-level ideals into actionable, day-to-
day guidelines for AI-augmented software develop
ment is an ongoing process. We expect that these
guidelines will soon expand to include using AI to
improve existing code bases. As AI-assisted coding
tools evolve, tackling technical debt is likely to
become an important use case for the technology.
One of the software developers we interviewed was
optimistic that “if you capture the logic and train
AI, you can reduce technical debt rapidly.” There is
already some empirical evidence of AI’s potential
use in maintaining legacy code, but clearly defining
tasks and keeping a human in the loop will be key.
Notably, Morgan Stanley has been experimenting
with this approach using an in-house GenAI tool
because off-the-shelf models are not yet capable of
handling legacy code translations effectively.
■ Treat technical debt management as an engi

neering priority, not an afterthought. There are
many guidelines for technical debt management.
What matters most is building it into everyday
workflows rather than just scrambling to fix some
thing when it breaks. Otherwise, according to our
economic modeling, performance will see a brief
short-term increase, but technical debt will eclipse
this improvement in the long term.
■ Invest in training junior developers so that

they are better able to use AI tools without cre
ating excessive technical debt. Several compa
nies have already begun upskilling efforts, particu
larly in prompt engineering, through in-house train
ing or external workshops. But developing the abil
ity to assess AI-generated output requires a different
approach. This is where mentorship becomes essen

tial. Traditional code reviews must evolve. Senior
developers should not only evaluate code quality but
also coach junior team members in responsible and
effective AI use. This kind of guidance can also serve
as a guardrail against the erosion of next-generation
developers’ foundational skills.

Generative AI is here to stay. But like any powerful
tool, it demands respect, discipline, and strategy. Orga
nizations that rush ahead blindly risk finding that
today’s productivity gains come at the cost of tomor
row’s ability to compete.

Edward Anderson is the Betty and Glenn Mortimer Centennial Pro
fessor for Business at the University of Texas McCombs School of
Business and the University of Texas Supply Chain Management Cen
ter. Geoffrey Parker is the Charles E. Hutchinson ’68A Professor of
Engineering Innovation at Dartmouth College and faculty director for
the Arthur L. Irving Institute for Energy and Society. He is also a
research fellow at the MIT Initiative on the Digital Economy. Burcu
Tan is an associate professor at the University of New Mexico Ander
son School of Management.

Reprint 67110. Copyright © Massachusetts Institute of Technology,
2025. All rights reserved.

https://doi.org/10.63383/hadW7619.

AI & Machine Learning

© MIT Sloan Management Review, 2025 4

https://arxiv.org/pdf/2502.12115
https://arxiv.org/pdf/2502.12115
https://www.wsj.com/articles/how-morgan-stanley-tackled-one-of-codings-toughest-problems-4f465959
https://www.wsj.com/articles/how-morgan-stanley-tackled-one-of-codings-toughest-problems-4f465959
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-debt-reclaiming-tech-equity
https://sloanreview.mit.edu/article/how-to-manage-tech-debt-in-the-ai-era/

PDFs · Reprints ·
Permission to Copy ·
Back Issues
Articles published in MIT Sloan Management Review are
copyrighted by the Massachusetts Institute of
Technology unless otherwise specified.

MIT Sloan Management Review articles, permissions, and
back issues can be purchased on our website,
shop.sloanreview.mit.edu.

Reproducing or distributing one or more MIT Sloan
Management Review articles requires written
permission.

To request permission, use our website
shop.sloanreview.mit.edu/store/faq or email
smr-help@mit.edu

© MIT Sloan Management Review, 2025

http://shop.sloanreview.mit.edu/
http://shop.sloanreview.mit.edu/store/faq
mailto:smr-help@mit.edu

	The Hidden Costs of Coding With Generative AI
	Generative AI can boost coding productivity, but careless deployment creates technical debt that cripples scalability and destabilizes systems.

	The Hidden Costs of Coding With Generative AI
	Why Technical Debt Grows Faster With AI
	When It’s (Relatively) Safe to Use Generative AI for Coding
	Reducing the AI ‘Tax’ on Technical Debt
	PDFs · Reprints · Permission to Copy · Back Issues

